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This paper presents a new approach to the solution of the Brownian motion
problem in which a particle subject to Brownian forces is also subject to a
potential. The dynamical description of this system is written in the form
of a multiplicative, stochastic, differential equation. This equation is solved
and the solution is simplified so that it may be written in terms of integrals
of well-understood functions. Enough of the kinematic details of the system
are revealed in this way to show that the infinite-time limit of this dynamical
solution is a Maxwell-Boltzmann distribution. Although there are other
approaches to this problem which yield the infinite-time limit directly, these
methods cannot be extended to find the solution to this problem for finite
times. In this paper the solution is exhibited for all times, and the details of
the approach to the infinite-time limit are elucidated.

KEY WORDS: Brownian motion; Gaussian stochastic process; multiplica-
tive stochastic process; Chandrasekhar—Kramers—Liouvilie equation.

1. INTRODUCTION

The subject of this paper is the problem of a particle under the influence of &
bounded potential and interacting with a fluid of other particles. Some physi-
cal problems related to this one are chemical reaction rates,’”’ macromolecular
bonding in solution, ion mobility experiments and calculations, and the
spectral linewidth of atoms.® Kramers has studied this problem in the high-
viscosity limit and applied the results to the problem of chemical reaction
rates. In this paper the problem is considered in a less restricted way.

The model which is used for the above problem is a particle in a box,
where periodic boundary conditions are assumed, influenced by an external
potential and a “Brownian’ fluid. The ““ Brownian” fluid is considered to be
composed of particles which make their presence known only through a
stochastic force F(7) and a damping coefficient «. It is assumed that initially

1 University of Tennessee at Chattanooga, Chattanooga, Tennessee.
2 School of Physics, Georgia Institute of Technology, Atlanta, Georgia.

627
0022-4715/80/0600-0627$03.00/0 © 1980 Plenum Publishing Corporation



628 Joel L. Davis and Ronald Forrest Fox

the particle is described by a probability distribution which is Maxwellian in
momentum space and arbitrary in position space.

This type of problem may be approached in several ways. For example,
it is known that the Brownian motion will cause the momentum distribution
to relax to a Maxwellian distribution. One may use this information to calcu-
late the infinite-time limit of the position distribution. This approach has the
advantage of being short and straightforward. It cannot, however, be extended
to a calculation of the probability distribution at finite times. In particular,
the distribution function is not a product of position and momentum distri-
butions at finite times.

Another approach, the one used in this paper, is to write the dynamical
equation governing the time evolution of the distribution function and find
an expression for the distribution function at time ¢. From a stochastic analog
of the Liouville equation,
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one may find the Chandrasekhar-Kramers-Liouville equation,®
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This equation has the solution
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Attempts to immediately derive useful information from this solution are
frustrated by the fact that the differential operators in the exponential do not
commute with each other. At this point, the type of operator algebra more
commonly used in quantum electrodynamics is brought in. The use of these
operator techniques overcomes the commutativity difficulties, thereby
strengthening the impression that these techniques are useful in other con-
texts, such as the present one. A disentanglement theorem, Eq. (13), is used
to write the average phase space distribution in series form, Eqs. (16)—(18).
The terms of this series are analyzed to all orders, Eq. (60), but the results
have not been reduced to a simple form.

As the terms of this series are analyzed, several interesting facts appear.
The first term in this series is the average phase space distribution for the
free Brownian motion problem. In the arguments following Eq. (40), it is
shown that the operator methods which are used in this paper lead to a solu-
tion of the free Brownian motion problem which is in some respects clearer
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than the results obtained by the usual methods.“*~® In the solution of this part
of the problem the exponential propagator operator for free Brownian motion
[see Eq. (20)] is simplified to a form which is particularly easy to use.

The exponential propagator operator is equal to

tp 0 o, L2 o
exp(-;—a 5;) exp{ta % (m + XT7p exp qSl(t)m p
1 o2 2kT o2
X exp[2¢2(t) ﬁm] CXP[—%(I) o W]

When the potential is present and the Nth term of the phase-space
distribution series is analyzed in the limit # — oo, one finds a product of a
polynomial in the potential of order N, (1/kT)", and the Maxwellian momen-
tum distribution, Eq. (69). If one factored the momentum distribution out of
the series, the series should sum to a Boltzmann distribution. In order to
prove this, the Boltzmann distribution is written in terms of a power series in
1/kT. The coefficients in these two power series appear very dissimilar and a
complex combinatorial proof is required to show that these coefficients are in
fact identical. In the next sections, some of the details of the calculations will
be given.

2. DIFFERENTIAL EQUATIONS FOR THE MOTION

The time evolution of this system is given by the stochastic analog of the
Liouville equation,

o  dU(r) o a{
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m

where the stochastic properties of F(¢) are those of Brownian motion with
“white noise”:

F@>=0 and <FOFs) = 2e/p) 3¢ - 5) @

where 8(¢ — s5) is the Dirac delta function. The damping parameter « from
Eq. (1) is found in the autocorrelation formula for F(¢) and that is the
fluctuation-dissipation relation which connects o and F(¢).™” The time evolu-
tion of this system can also be given in additive stochastic form as

O = o0, 50 = 2 p0) - L) + Foy

Whether one models this problem with an additive stochastic equation or a
multiplicative stochastic equation, the function of interest in this paper is not
the phase space distribution, but the stochastic average of the phase space
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distribution. The time evolution for this distribution is given by the Chandra-
sekhar-Kramers-Liouville equation:
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which is derived from the Liouville equation in Ref. 8 and from the additive
stochastic equations in Ref. 9. The solution to Eq. (3) is given by
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Equation (3) is a caricature of the Boltzmann equation, which can be written
p o  dU D
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in which coll(f(r, p, t)) signifies the nonlinear integral operator for collisions
in the Boltzmann equation. This operation is known to drive the momentum
distribution toward a Maxwellian form,® so that

Jsp, 1) 5> A Wa(p) (6)

where W,(p) is the Maxwellian momentum distribution. Asymptotically
coll(f(r, p, t)) = 0 and (9/8t)f(r, p, t) = 0, so that
_p 0, dU% _
(22 +% 240w = 0 ™
must hold and this implies that A(+) = Cexp[—BU(»)], where C is an

arbitrary constant. In Eq. (3) the operator «(0/op)(p/m + B~ 0/dp) drives
{D(r, p, t)y to the asymptotic form

<D(I", ps t)> > A(r)Wm(p) (8)

t— o
with (8/0t )X D(r, p, t)> = 0. Therefore, again A(r) = C exp[—BU(r)] because
both the Boltzmann equation and Eq. (3) contain the same streaming operator,
_po _ dUs
mor  dr dp
In the following, the details of the dynamics of the approach to the Boltzmann
distribution are examined. Operator techniques are used to show that a

T mér

3 This argument for the Boltzmann equation appears in Ref. 10.
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series representation of the Boltzmann distribution is obtained as the
dynamical asymptotic limit of Eq. (4).

3. SIMPLIFICATION OF THE PROPAGATION OPERATOR

In the process of simplifying the exponential propagation operator, it
will prove convenient to define several operators.

4=22 B:aﬁ(£+}g—1ﬁ)
m

m or . op 2 ajp )
C=¥"%w P mar
The following relations will also be useful:
[4, B] = —(e/m)(4 + C), [B, C] = —(¢/m)C, [4,C1=D
[4, D] = [B, D] = [C,D] =0 (10

where [., .] denotes the commutator operator. Equation (4) may now be
rewritten as

0
{D(r,p, 1)) = exp[—t(A — B — d?{g")a_p

)| pe.r0 ap
The problem encountered in analyzing the action of the exponential operator

is that the operators in the exponent do not commute,

exp [— t (A — B - dZSF) %)] # exp(—t4) exp(¢B) exp [l d(éfr) 561;

|

There is, however, a ““disentanglement” theorem (Ref. 7, p. 1925; Refs. 11,
12) from time-dependent perturbation theory which is quite useful in this case.

4. A DISENTANGLEMENT THEOREM AND EXTENSION OF
GLAUBER'S THEOREM

4.1. Disentanglement Theorem
If R, and R, are noncommuting, differential operators, then

explis(R, + Ry)]

= exp(isR;) T exp[if exp(—is'Ry) R, exp(is'R,) ds’] (13)
4]
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where, for an operator O(s) which does not commute with itself at different
times,

T exp ” 0(s") ds’}
g
0 5 31 Sn—-1
=1+ Z J dslf dsz...J~ ds, O(s1)0(s2) -+ O(s,.) (14)
n=19v0 0 Q
Using this disentanglement theorem, one obtains from Eq. (11)

(D(r,p, 1)) =exp[—t{(4d—B)] T exp{fsexp[s(A — B)]

du(r) o

s
i exp[—s(4 — B)] ds}D(r, 0, 0)

X

Using the definition of the time-ordered exponential, one may write the
average distribution as a series

(D(,p, 1)y = Do + > Dy 16
N=1

where

D, = exp[—t(4 — B)]D(r, p, 0) an
and
Dy =f ds, f ' dsz-..fN_l ds, exp[—(t — s.)(A — B)] di}f’”)é

4] 4] 0
du(r) o

x exp[—(s; — so)(4 — B)] -

a5 exp[—sy(4 — B)] D(r, p, 0)
(18)

Operators of the form exp[—#(4 — B)] appear several times in Eqgs. (17)
and (18), and the next step will be to factor this operator into a form in which
each differential operator factor acts consecutively. In order to do this one
needs the disentanglement theorem and a time-ordered extension of Glauber’s
theorem.®

4.2. Time-Ordered Extension of Glauber's Theorem

z exp{ [ a5 1765) + £}
= ]_’exp[fdsf(s)} X (Z_"exp“jdsg(s)]

X T exp{ f & [ [g(sl),f(sz)]} (19)
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In this theorem fand g do not commute, but do commute with their commu-
tator. Notice in particular the different senses of the time ordering in Eq. (19).
However, as will soon be seen, all time orderings will vanish. Using these
theorems, one obtains

exp[—#(4 — B)] = exp(—14) exp(¢B) exp[$.(1)4]

X expl4o(1)C] expls(r) D] 0)
where
$1(1) = —fo S—mgexp(—%) ds = Zexp(—%) + %1 [exp(——%) - 1] 21)
40 = = SEcosh e ds = 5[4:() + (1) @)

I A ,F' v @ s'a) ,« _s"a )
bolt) = —51° ~ fds I ds" s m(cosh m)s mexp( 771—) (23)

0

and

$i0) = =5 [BOB0 + 200 + L 4i0) = 2 (1) 4

The commutativity difficulties have been overcome! The phase space distri-
bution may now be written out in terms of exponential operator factors which
act consecutively. Several lemmas will be useful in the further analysis of this
problem.

Operator identities

“%}f"“) = 2 %) 25)

2. exp(tB) % = % exp ( —%) exp(tB) (26)

3. exp[—t(4 — B)]% = [% exp(—%:) + f;}gl(t—)%]
x exp[—t{(4 — B)] X))

The action of operators on Maxwellian distributions
0 ¢
4. exp (b & 87) exp(ar) Wo.(p + q) = explar) Wp,(p + g + ab) (28)

5. exp(tB) Wp(p + a) = Wm(p + aexp(—%)) 29)
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Simple identities

6a. W..(p) explap) = Wm<p - a/;n) exp (G;B ) (30)

6b. Wa(p + b) exp(ap) = (p + b~ g ) exp[ 3 (ma — Zﬁb)] G

Lemmas 1, 2, and 5 are proved in Ref. 8. Lemma 3 is an application of
Lemmas 1 and 2 to Eq. (20).

5. ANALYSIS OF THE SERIES EXPANSION OF D(r, p.t)

5.1. Analysis of D,, the Simple Brownian Motion Case

In addition to being the first term in the expansion of the average phase
space distributions for the problem under consideration, Dy is also the average
phase space distribution for a system which consists of a particle acted on by
a “Brownian” fluid but not subject to any other forces. It will be seen that
the present treatment will lead to familiar results. Using periodic boundary
conditions, we assume the initial conditions to be

D@, p,0) = Z L~12Cy exp (z’ 2%7 rN) Wa(p) (32)
N

where the initial spatial distribution R(r, 0) = >y L™ *2Cy exp[i(2n/L)rN] is
Fourier-analyzed in a box L. Then D, may be written, using Egs. (9) and (20),
as

Dy, =L"12 Z Cy exp( 2m ) exp[Lzﬁ 4¢>3(t)]
X exp(—it 2L—7T N%) exp(tB) exp [i¢1(t) —25 N%]

X W,,,(p + i¢2ggN%) (33)
or

Dy, =L ; Cy exp(izL——ﬂ rN)
< Walp+ 221 4 po0 - e (- 2) })

X exp [%L?-T;'g; 954(t)] (34)
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where
$a(t) = dda(t) + 42%(1) — [2¢(2) — :(2)]2
— 1% = 2[24,5(t) — $1(t)] exp(—ta/m) (35
$u(t) = —2(tmfe) + 2(m?[oe*)[1 — exp(— ta/m)] (36)

One notes that in Eq. (34)
L+ [242(1) — $u(D] exp(—ta/m) = (m/e)[1 — exp(—tafm)]  (37)
Since Einstein’s relation for the diffusion constant is
D = 1/Ba (38)
one may write Eq. (34) as

D, = L—”zz Cy exp(z’zi-—rrN) Wm(p + izf#Nm[l - exp(—%)]D)
N

2A72
X exp{——%Lév D[t — ’En + %exp(—%ﬂ} 39

It is clear from the damping behavior of the last exponential that in the
infinite-time limit one has

lim Dy = L™ *W,(p) (40)

s 00
Thus, the average of the phase space distribution for a particle in a
“Brownian” fluid but subject to no other forces relaxes to a distribution
which is uniform in position space and Maxwellian in momentum space, as
was expected. One should also note that Eq. (39) contains in the last exponen-

tial the term
D[t - + mexp(—t—a)]
[+4 ¢4 m

which is the diffusive behavior of a particle.*3:19

Equation (39) shows the advantage of calculating the phase space distri-
bution rather than calculating the position distribution and momentum
distribution separately. It also illustrates how information is lost when one
contracts the description of a system. When one asks, “What is the average
position distribution of such a system?,” one obtains, by the methods nor-
mally used,*~® a Gaussian distribution of zero mean and a second moment of

ZD[t — %1 + %exp(—%)] “4n

This is also the answer one obtains by integrating Eq. (39) over momen-
tum space and transforming from Fourier components to position space.
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On the other hand, one may ignore position information and ask the
question, “What is the average momentum distribution?”” Traditionally, the
answer is, at all times, the Maxwellian distribution. In the present calculation,
integrating Eq. (39) over position space yields a Maxwellian momentum
distribution.

One may also inquire about conditional probabilities. What is the average
position distribution of a particle at some time ¢, which is known to have a
specific momentum p at time ¢? It is not the above Gaussian distribution,
Eq. (41). The average momentum distribution at a specific position is not
Maxwellian. Equation (39) makes these facts clear.

5.2. Analysis of D;

We have
Dy = ) fds exp[—(t — s)(4 — B)] ex /iz—"rk)ﬁ
1 L) p 1 p( L ") op
x exp[—s5,(4 — B)] exp(iZL—Tr rN) W.(p) 42)
where
~ .2 £
() = kzlg L—lU(kl)CszT—rk 43)

Using the result which was obtained in the analysis of D,, one may rewrite
Eq. (42) as

Dy = o [ dsvexpl=(c = A = B S exp 1 20V + )|

X Walp + f(s1, N))F(sy, N) (44)
where '
f(s1, N) = (12rNm|LBo)[1 — exp(—s,a/m)] (45)
and
F(s1, N) = exp[(2e®N?[L2Bm),(s1)] (46)

One may now use Lemma 3, Eq. (27), and obtain

D, ={+} exp[z’ sz-Tr(N + kl)] f:dsl {+}s

x exp[—(t - sl)%T(N + k) %]
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x expl(t — 51)B] exp [¢1<r -2 W -k ]
X exp [gbz(t — )i Z—’/; (N + k1) 2 6—3]

< exp| A+ kalt = 30| Walp + fGses NDFGs ) 47
where

(e = gemp| 0 = sy 2]+ ER=BOE Ty gy g

Next D, is sunpliﬁed and one obtains

i 2 2
D, = Z ZL—lU(kl)chf’Tkl exp[l-Lzr(N + kl)]

f ds; { apexp[ (t — 1) %] P it S $ult = sl) 2m (N + kl)}

m

x Wm(P + f(s1, N) eXP[_(t - Sl)}%] + f(t ~— 51, N + k1))
x F(t — 51, N + k)F(s;, N)

x exp( JCRYL i2m —(V+ kl){l - exp[ (t — 1) %]}) (49)

Now the infinite-time limit of D, will be examined and it will be found
to depend on the initial spatial distribution only as far as the normalization.
In the integrand, lim,_, ,, F(t — s, N + k) is zero unless s, > or N + k, =
0. If N + k; =0, the integrand contains a term lim,._, , exp[—(f — §;)a/m]
and the integrand is still zero unless s; — co. If 5; — o0, then the integrand is
zero due to F(s;, N) unless N = 0. Therefore, only the N = 0 term in the
sum over /N contributes to the infinite-time limit of D,. From normalization
requirements, Eq. (32), C, = L~Y2, We have

14
Iim D, = L~* ZL‘I/zﬁ(kl) lim f ds, exp[—(t — s))(4 — B)]
Te1 i Jg

t— 0
2ar 2 0
A ki exp (1 7 rkl) Fr W.(p) (50)
Using the definition of A4 and the fact that B exp[i(2#/L)rk,] W,(p) = 0, one
may write Eq. (50) as
t
lim Dy = L=1 3 L1200 (ky) lim f ds, (—B) exp[—(t — s,)(4 — B)]
k1 =% Jy

t=> 0

x (4 — B) exp(iZL—”rkl) Wo(p) (s1)
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The integrand is now an exact differential! Integrating gives

hmDy~leL”WWJ mhwp—mJ—awﬂwmm(ﬁ)

t-> 00

or
lim D, = —BL™*W(p)IU(r) — U(r)] (53)
t—> 0
If one expands a Maxwell-Boltzmann distribution in powers of 8, one finds
the asymptotic limit of D, and D, for the first two terms. The proof of this

appears later. In order to prove this relation to all orders, one must analyze
D, for arbitrary n.

5.3. Analysis of D,

From what has been learned in the analysis of D, and D,, D, may now
be evaluated. A very useful result may be abstracted from the analysis of D;.
From Eqs. (44) and (49), one may show

exp[—t(ilszK—- B)] Wa(p + b)

= W, (p + bexp(———) + 1, K))F(t K)

xu%bggp—m&%] (54)

From Eq. (18) one has

Dy= 3 303 3 L) Ok Ul

k2

SN -1
X Cl( ) ]_kz ka dSIf dS2 f dSN
0

x exp[—(t — s.)(4 — B)] exp(z‘fﬂrkN) -a%

x exp[—(s; — s2)(4 — B)] exp(izfﬂ rkN_l) 62

=3

x exp( klr) i]exp[ sy(4 — B)] exp(izfﬂ-rl) W.(p) (55)
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Letting the A operators act, one obtains

t SN -1
Dy = {}1] dsl"'f dsy

ool nftlrs $4) )
ool sl 54 - )

x;%exp[ suli 22l - )] W,(p) (56)

where

= o) S AT b Z) o1

i=1 kp

Using Lemma 3, Eq. (27), one has

Dy ={-}h f a’sl---jm‘1 dsy {}2 exp{—(t - sl){il%p

0

X (l + élki) - B]}exp{—(sl - sz)[iz%%p(l + TZ: kl-) - B}}
x---exp[-—sN(iLz%pl — B)] W.(p) (58)

where {---},, the product obtained from commuting all the &/dp operators to
the left, is given by

2 }2={—i—,exp[ -]

-4 ()
eolo-3
bl =t = s 2 (14 5 k)
< exp| =G5, — 5 2|

+ Iy = 52 = i — s 7o (1 + Nk)}
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X {% exp[~—(t — Sy) _‘i]
+ [t — 51— $it — s1)] 22” ( + 2 ki)
X exp[—(sl — Sy) %}

ot Bt — S = it — sN)1’2”<l+k1)} (59)

Using Eq. (54), one may rewrite Eq. (58) as
Dy = {- hf ds, - fSN " dsy
X {Ja W, (p + flsw, 1) exp[ (t — sy) ;%]
+ f(w-1 = s, [+ k) exp[—(t ~ Sy-1) %]

R R ¥ ) RN (©0)

where

{Ys = F(sw, DF(sy-1 — Sy, | + kl)---F(t -5, 0+ i ki) (61)

and

(3 = ox0 (2 ftows D1 = exp| ~(su-s = s 5] 0 + )

< oxp (22{ fsu, x| ~Gov- = 0 3]

+ fyor — Sws 1+ kl)}
{1 = expl ~(ou-s = 502 “Jhas b+ k)
x exp( {f(sN,l) exp[ (s — 5x) i] F f(Swos — Sns 1+ k1)

x exp[—(sl — sN-l)n%] ot flsg — 52,0 + TZI ki)}

X {1 — exp[—(t — 51) %]}(1 + iZNl ki)) (62)
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Equation (60) is an expression for the phase space distribution at any
time ¢z. In this expression all of the differential operators have acted, with the
exception of some of the momentum operators. Even though there are N
integrals yet to be performed, one may still find out a lot about the dynamics
of the system by studying the form of the expression. The term {---}; con-
tains damping exponentials, which, for many terms in the sums over Fourier
indices, provide for a contribution to the integrals only when the integration
variable is near ¢. As ¢ grows, this trend is enhanced. The limit of Dy for large
¢ is now calculated using this approach.

From the form of D, it may be argued that the only term in the sum 3,
that contributes to the infinite-time limit of D, is the term / = 0. This is due
to the product {---}; which contains

N
limF(t—sl,l-l— zk,.) =0
i=1

=0

unless s, — 0. If 5, — o0, then

lim F(s1~s2,l+ Zk) =0

S§1-+ 0

unless S, = co. This process continues until limg,. . F(sy, /) = 0 unless
/=0.

This chain of argument may be broken at some point if there is a sum
which is zero, I + >/ k; = 0. In this case the time variable s,,, is not
required to become infinite. This type of problem also occurred in the evalua-
tion of D, ; see the arguments following Eq. (49). In this case the argument
is similar. The chain of argument is assumed to be intact up until this first
break. Thus, the time variables #, sy, 55, . . ., 5; all become infinite while, s, ,
is allowed to remain finite. {---}, contains the following term:

{;}; exp[~(z - sm)%] 1= s = it - 5] 1277'( i )

i2
X CXP[—(SZ — $+1) %] toet s = S — Guls — Sz+1)]L}Z

y (z N Afz’ k)} 63)

The exponentials in this term ail damp to zero and only the last term remains.
This last term, however, contains / + 3137 k;, which was assumed to be zero.
Thus one sees that all such breaks in the chain of argument which has been
constructed lead, inevitably, to a zero contribution. It has been shown then
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that lim,_, , Dy may be written in terms of only the normalization information
from the initial spatial distribution,

tim D, = tim 272 [ o [ @y xpl=0 - s -y 940 2
"‘j,ﬁ’) aa exp[—sy(4 — B)] Wi(p) (64)
Since
2 expl—s(d = B Wald) = 5 Wald) = L W) (69)

Eq. (64) may be written in a form similar to Eq. (50),

SN-2
lim Dy = hm L~ dsl f dsy_; expl—(t — s:Y(4 — B)]
t—+c0 - 00 o 0

d(cfigr) ;p,..f:rv_l dsy exp[—(Sy_1 — sy)(4 — B)]
x (=AU )W,(p) 66)

Since —BW,(p) = 0, this quantity may be added to the integrand, thereby
making it an exact differential of sy! Integrating, one has

t— 00 t—

t SN-2
lim Dy = lim L™* dsl---f dsy -1
0 [¢]

ave) o
dr op

x (=B)1 — exp[—sy_1(4 — BYLU(r)W,(p) (67)

The part of the integrand which uses the 1 in the last bracket is already in the
form of Eq. (66) and this integration procedure can be iterated. The part of
the integrand which uses exp[—sy-1(4 — B)] is of the form of Eq. (56) with
R(r) replaced by U(r). It has been shown that in an equation of this form the
function of r may be replaced by its normalization information,

x exp[—#(t — s.)(4 — B)]

L
—f U = UEL—lf UG dr (68)
0
As this procedure is repeated N times one obtains

lim Dy = 2=y =) [ dU_]NWm@) ©9)



Maxwvell s Boltzmann 643

Thus,
Dy = L'W,(p)
Dy = ~L7'U(r) — UIW,(p)
D, = L1 (U? — U2 - 20U + 2UHW,(p)
or
Dy = LB*[(U — U)? — (U — URIW,(p) (70)
Therefore one has
lim Dr,p, 1) = L7* 3 BYKy' () Walp) (1)
where i
K@) = (17| == [ av] )

This is a Maxwell-Boltzmann distribution. This is a remarkable statement.
Only upon close examination does Eq. (71) reveal itself to be a Maxwell-
Boltzmann distribution. In order to prove this statement, one needs a power
series in B8 which is equivalent to a Boltzmann distribution.

6. SERIES EXPANSION OF THE BOLTZMANN DISTRIBUTION

Theorem 1. The series expansion of the Boltzmann distribution is
given by

exp[-BUM)] ;< N
[Fexpl—BUM] 5L 2 Kp 73)

where

50) = G- S, s (U0 — TOP~

ST [ p A% St Vi T e TR )

m
partitions [=1 my! ()™
of m

In Eq. (74), g(r) = L1 f DL g(r) dr for any function g(r), and the symbol

partitions
of m

is the sum over all partitions of m into smaller integers / with multiplicity #z,
such that
m m
m = z Im, and p= m
=1 1=1
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Henceforth this summation symbol is used without explanation. Theorem 1
is proved in Ref. 8. In order to show that the term (71) is a Boltzmann
distribution, one must show

Ky(r) = Ky'(r) 7%

Proof of the Boltzmann Term. In this proof the method of induction is
used. If the first several terms in the two series are examined, it is easily seen
that they are identical. Assume

Ky(r) = Ky'(r)

Then one may write

Kipn(r) = =(1 =) j du Ky(r) (76)
(_1) - 1 INMN-m+1
- )va(N N —mr1¢ V)
plm! (=1 =
x s W OT (77)

partitions =1
of m

Now one makes use of a combinatorial lemma which is proved in Ref. 8. This
lemma is

> Harrmn
Paggi}‘;}ons 1=1 (N + 1 - m)' ml! (Z’)ml

= > (~DYUE) - TOF T

x {{U(r) = 71—(3“"’

— (- S TS w6y - ooy (78)

TV (1M, ! m
pa.rcmons =1 '(l ’)
of N+1

Using this lemma, one obtains

Kipar) = (=D 2 [UG) = U@

= (= 1Drp!

e T mrmrays (U0 — TOR D™
x> TT A 06 - Do (79)

partitions k=1
of N+1
or
Ky +1(r) = Kyi1(r) (80)
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This completes the proof of the fact that the series (71) is a Maxwell-
Boltzmann distribution.

7. CONCLUSION

This paper has presented a solution to the problem of the forced motion
of a particle in a “ Brownian” fluid. This was done using the disentanglement
theorem, a time-ordered extension of Glauber’s theorem, commutator opera-
tors, and other operator algebra. These techniques proved to be very powerful
and it was shown that the solution may be written and simplified to the point
such that information can be extracted from it. Specifically, it is shown from
this solution that the infinite-time limit of the probability distribution for the
particle is a Maxwell-Boltzmann distribution. An obvious extension of this
problem is to specific potentials which have wide interest or applicability.
The problem of an ion drifting under the influence of a constant electric field
will be solved at all times in a paper in preparation.
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