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This paper presents a new approach to the solution of the Brownian motion 
problem in which a particle subject to Brownian forces is also subject to a 
potential. The dynamical description of this system is written in the form 
of a multiplicative, stochastic, differential equation. This equation is solved 
and the solution is simplified so that it may be written in terms of integrals 
of well-understood functions. Enough of the kinematic details of the system 
are revealed in this way to show that the infinite-time limit of this dynamical 
solution is a Maxwell-Boltzmann distribution. Although there are other 
approaches to this problem which yield the infinite-time limit directly, these 
methods cannot be extended to find the solution to this problem for finite 
times. In this paper the solution is exhibited for all times, and the details of 
the approach to the infinite-time limit are elucidated. 

KEY WORDS: Brownian motion; Gaussian stochastic process; multiplica- 
tive stochastic process; Chandrasekhar-Kramers-Liouville equation. 

1. I N T R O D U C T I O N  

The subject  of  this p a p e r  is the p rob l em of  a par t ic le  under  the influence o f  a 
bounded  potent ia l  and  in teract ing with a fluid of  o ther  part icles.  Some physi-  
cal p rob lems  re la ted  to this one are  chemical  react ion rates,  (1~ mac romolecu l a r  
bond ing  in solut ion,  ion  mobi l i ty  exper iments  and  calculat ions,  and  the 
spectral  l inewidth  o f  a toms.  (2~ K r a m e r s  has  s tudied this p rob l e m in the  high- 
viscosi ty l imit  and  app l ied  the results to the p rob l e m of  chemical  reac t ion  
rates.  In  this pape r  the p rob l em is cons idered  in a less res t r ic ted way. 

The mode l  which is used for  the above  p rob lem is a par t ic le  in a box,  
where  per iod ic  b o u n d a r y  condi t ions  are  assumed,  influenced by  an  externa l  
potent ia l  and  a " B r o w n i a n "  fluid. The " B r o w n i a n "  fluid is cons idered  to be 
c o m p o s e d  o f  par t ic les  which make  their  presence known  only th rough  a 
s tochast ic  force i f ( t )  and  a d a m p i n g  coefficient a. I t  is assumed tha t  ini t ial ly 
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the particle is described by a probability distribution which is Maxwellian in 
momentum space and arbitrary in position space. 

This type of problem may be approached in several ways. For example, 
it is known that the Brownian motion will cause the momentum distribution 
to relax to a Maxwellian distribution. One may use this information to calcu- 
late the infinite-time limit of the position distribution. This approach has the 
advantage of being short and straightforward. It cannot, however, be extended 
to a calculation of the probability distribution at finite times. In particular, 
the distribution function is not a product of position and momentum distri- 
butions at finite times. 

Another approach, the one used in this paper, is to write the dynamical 
equation governing the time evolution of the distribution function and find 
an expression for the distribution function at time t. From a stochastic analog 
of the Liouville equation, 

-m r + ep 0p 

one may find the Chandrasekhar-Kramers-Liouville equation, (3~ 

p ~ dU(r) O 
~ ( D ( r , p , t ) )  - m ~ r  ~ ~p + 

+ + Fp p, t)> 

This equation has the solution 

(D(r,p, t ))  = exp - -~r + t dr ~p + ~t~p + O) 

Attempts to immediately derive useful information from this solution are 
frustrated by the fact that the differential operators in the exponential do not 
commute with each other. At this point, the type of operator algebra more 
commonly used in quantum electrodynamics is brought in. The use of these 
operator techniques overcomes the commutativity difficulties, thereby 
strengthening the impression that these techniques are useful in other con- 
texts, such as the present one. A disentanglement theorem, Eq. (13), is used 
to write the average phase space distribution in series form, Eqs. (16)-(18). 
The terms of this series are analyzed to all orders, Eq. (60), but the results 
have not been reduced to a simple form. 

As the terms of this series are analyzed, several interesting facts appear. 
The first term in this series is the average phase space distribution for the 
free Brownian motion problem. In the arguments following Eq. (40), it is 
shown that the operator methods which are used in this paper lead to a solu- 
tion of the free Brownian motion problem which is in some respects clearer 
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than the results obtained by the usual methods. ~4-6) In the solution of this part 
of the problem the exponential propagator operator for free Brownian motion 
[see Eq. (20)] is simplified to a form which is particularly easy to use. 

The exponential propagator operator is equal to 

e x p ( - - ~  ~ r ) e x p [ t ~  ~p ( P +  ~T~p) ]  exp [~ l ( t )P  ~r ] 

x exp 2~2(t)kT~ p exp -~a( t )  

When the potential is present and the Nth term of the phase-space 
distribution series is analyzed in the limit t ~ o% one finds a product of a 
polynomial in the potential of order N, (1/kT) N, and the Maxwellian momen- 
tum distribution, Eq. (69). If  one factored the momentum distribution out of 
the series, the series should sum to a Boltzmann distribution. In order to 
prove this, the Boltzmann distribution is written in terms of a power series in 
1/kT. The coefficients in these two power series appear very dissimilar and a 
complex combinatorial proof is required to show that these coefficients are in 
fact identical. In the next sections, some of the details of the calculations will 
be given. 

2. D I F F E R E N T I A L  E Q U A T I O N S  FOR THE M O T I O N  

The time evolution of this system is given by the stochastic analog of the 
Liouville equation, 

05 - ~ + ~ Op Op - p + F(t) D(r,p,t)  (1) 

where the stochastic properties of F(t)  are those of Brownian motion with 
"white noise":  

(/~(t)) = 0 and (f( t)P(s))  = 2(u//~) 3(t - s) (2) 

where 3(t - s) is the Dirac delta function. The damping parameter c~ from 
Eq. (1) is found in the autocorrelation formula for F(t)  and that is the 
fluctuation-dissipation relation which connects ~ and F(t). (7~ The time evolu- 
tion of this system can also be given in additive stochastic form as 

1 t = f(t) = m p  () ,  ~O(t) - m P ( t  ) dU(r) r(t) + F(t) 
dr 

Whether one models this problem with an additive stochastic equation or a 
multiplicative stochastic equation, the function of interest in this paper is not 
the phase space distribution, but the stochastic average of the phase space 
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distribution. The time evolution for this distribution is given by the Chandra- 
sekhar-Kramers-Liouville equation: 

{D(r ,p , t ) )  = - ~ +  dr ~p 

+ ~  
which is derived from the Liouville equation in Ref. 8 and from the additive 
stochastic equations in Ref. 9. The solution to Eq. (3) is given by 

[ pt____6 t dU(r) <D(r,p, t)} = e x p [ - m  ~r + dr ~p 

+ e~t ~p + api j  

Equation (3) is a caricature of the Boltzmann equation, which can be written 

r ( P ~ d U ~  ~ f (  ,p,  t) = , - m ~ r  + -~r-Zp) f ( r 'p '  t) + coll(f(r,p, t)) (5) 

in which coil(f  (r, p, t)) signifies the nonlinear integral operator for collisions 
in the Boltzmann equation. This operation is known to drive the momentum 
distribution toward a Maxwellian form, 8 so that 

f ( r ,p ,  t) ~-.~o > A(r)Wm(p) (6) 

where Win(p) is the Maxwellian momentum distribution. Asymptotically 
coll(f(r, p, t)) = 0 and (e/Ot)f(r, p, t) = 0, so that 

dU ~ \ A r  ~ 

must hold and this implies that A(r) = Cexp[-~U(r)] ,  where C is an 
arbitrary constant. In Eq. (3) the operator ~(e/~p)(p/m + ~-10/~p) drives 
(D(r, p, t)) to the asymptotic form 

(D(r,p,  t)} t-.~o > A(r)Wm(p) (8) 

with (O/Ot)(D(r, p, t)} = 0. Therefore, again A(r) = C exp[-/~U(r)] because 
both the Boltzmann equation and Eq. (3) contain the same streaming operator, 

p ~ d U O  
_ _ _ _ _  .A f_  _ _ _ _  

m ~r dr ~p 

In the following, the details of the dynamics of the approach to the Boltzmann 
distribution are examined. Operator techniques are used to show that a 

3 This argument for the Boltzmann equation appears in Ref. 10. 
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series representation of the Boltzmann distribution is obtained as the 
dynamical asymptotic limit of Eq. (4). 

3. S IMPLIF ICATION OF THE PROPAGATION OPERATOR 

In the process of simplifying the exponential propagation operator, it 
will prove convenient to define several operators. 

m Or' B = ~-~p + fi-1 O 

~2 2 O 2 
C = 2t3-10p Or' D 13m Or 2 

The following relations will also be useful: 

(9) 

[A,  B ]  = -(a/m)(A + C), [B, C] = -(aim)C, 
[A, DI = [B, D] = [C, D] = 0 

[A, C] = D 

(10) 

where [., .] denotes the commutator operator. Equation (4) may now be 
rewritten as 

(D(r ,p ,  t)) = exp - t ( A  - B dr 

The problem encountered in analyzing the action of the exponential operator 
is that the operators in the exponent do not commute, 

dU(r) e ~] exp[t dU(r) e x p [ - t ( A - B  ~ jp] j  # e x p ( - t A ) e x p ( t B )  dr ; ]  (12) 

There is, however, a "disentanglement" theorem (Ref. 7, p. 1925; Refs. 11, 
12) from time-dependent perturbation theory which is quite useful in this case. 

4. A D ISENTANGLEMENT THEOREM A N D  EXTENSION OF 
GLAUBER'S THEOREM 

4.1. Disentanglement Theorem 

If R1 and R2 are noncommuting, differential operators, then 

exp[is(R1 + R2)] 

[fo ] = exp(isR1) T exp i exp(-is'R1) R2 exp(is'R~) ds' (13) 
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where, for an operator O(s) which does not commute with itself at different 
times, 

if ] T exp O(s') ds' 
L,J0 

= 1 + ds~ ds2.., ds~ O(sl)O(s2)...O(s,) (14) 
n = l  

Using this disentanglement theorem, one obtains from Eq. (11) 

Ifo (D(r,p, t ))  = e x p [ - t ( A  - B)] T exp exp[s(A - B)] 

(15) dU(r) 0 
exp [ - s (A  - B)] ds~D(r,p, O) 

• dr Op 

Using the definition of the time-ordered exponential, one may write the 
average distribution as a series 

(D(r,p, t)) = Do + 2 DN (16) 
N = I  

where 
Do = e x p [ -  t(A - B)]D(r, p, 0) (17) 

and 

fo fo  fo DN = dsl ds2.." dsN e x p [ - ( t  - si)(A - B)] dU(r) 0 
dr ep 

dU(r) 
x e xp [ - ( s l  - se)(A - B)] dr 8p exp[-sz4(A - B)] D(r,p, O) 

(18) 

Operators of the form e x p [ - t ( A  - B)] appear several times in Eqs. (17) 
and (18), and the next step will be to factor this operator into a form in which 
each differential operator factor acts consecutively. In order to do this one 
needs the disentanglement theorem and a time-ordered extension of Glauber's 
theorem. (8) 

4.2.  T i m e - O r d e r e d  E x t e n s i o n  of  G l a u b e r ' s  T h e o r e m  

T exp(f~  ds [ f (s)+ g(s)]) 

x T expff~dsl  fflds2 [g(sl),f(s2)]} (19) 
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In this t heo remfand  g do not commute, but do commute with their commu- 
tator. Notice in particular the different senses of the time ordering in Eq. (19). 
However, as will soon be seen, all time orderings will vanish. Using these 
theorems, one obtains 

exp[ -  t (A - B)] = exp( -  tA) exp(tB) exp[~l(t)A] 

x exp[q~2(t)C] exp[r (20) 

where 

roSa m ~bl(t) = -  meXp - d s =  t e x p  - + -=  exp - - 1 (21) 

_ ft  sc~ cosh s~ ds = 1 
~2(t) = J0 m m g [4l(t) + ~1(- t ) ]  (22) 

1 t3  a t s' _ s c ~  . c~ --'m- -- - ds'  ds" s '  ~ cosh s exp (23) 4~a(t) = - 6  m -,0 m W m 

and 

114 ~ m m )] $s( t )  = - ~  ~(t)g~z(- t )  + ?~12(t) + --e, (91(t) -- --a ~ l ( - - t  (24) 

The commutativity difficulties have been overcome! The phase space distri- 
bution may now be written out in terms of exponential operator factors which 
act consecutively. Several lemmas will be useful in the further analysis of this 
problem. 

Operator identities 

1. ~ exp(4,A) _ q~ ~ exp(q~A) 
Op m r  

('o) 
- m  

2. exp(tB) = Fp exp exp(tB) 

3. e x p [ - t ( A - B ) ] F p =  7ppeXp - + 
t - ~ ( t )  ~ ] 

m ~r ] 
• exp[ - t (A  - B)] 

(25) 

(26) 

(27) 

The action o f  operators on Maxwell ian distributions 

4. exp b ~pp ~r exp(ar) Wm(p + q) = exp(ar) W,~(p + q + ab) 

( 5. exp(tB) Wm(p + a) = W m p  + a e x p  - m  

(28) 

(29) 
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Simple identities 
6a. Wm(p) exp(ap) = Wm(p ~ )  [a2m\ - e x p ~ - ~ )  (30) 

Lemmas 1, 2, and 5 are proved in Ref. 8. Lemma 3 is an application of 
Lemmas 1 and 2 to Eq. (20). 

5. ANALYSIS OF THE SERIES EXPANSION OF D ( r , p , t )  

5.1. Analysis of Do, the Simple Brownian Mot ion  Case 

In addition to being the first term in the expansion of the average phase 
space distributions for the problem under consideration, Do is also the average 
phase space distribution for a system which consists of a particle acted on by 
a "Brownian" fluid but not subject to any other forces. It will be seen that 
the present treatment will lead to familiar results. Using periodic boundary 
conditions, we assume the initial conditions to be 

D(r,p,O)=~L-~2Czcexp(i~rN) Win(p) (32) 

where the initial spatial distribution R(r, O) = ~N L-1/2CN exp[i(2rr/L)rN] is 
Fourier-analyzed in a box L. Then Do may be written, using Eqs. (9) and (20), 
a s  

Do = L -1/2 ~N C• exp i Nr exP[L2/3 m 

x exp(-it2-ZN p) exp(tB)exp[i~a(t)2-~N p] 

x Win(p+ i~22--ZN~) (33) 

o r  

Do = L -  1/2 ~ Cs exp i -L rN 
N 

x Win(p+ i2~ f t  _t_ [2~b2(t) _ q~l(t)] e x p ( - - ~ ) } )  

[2rr2N2 ~4(t)] 
• exp/ZW  (34) 
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where 
r = 4r + 4r - [2r - r 2 

- t z - 2t[2r - r exp ( - t c~ /m)  (35) 

r ~( t ) = - 2( tm/a) + 2(m2/a2)[1 - exp(-t~/m)] (36) 

One notes that in Eq. (34) 

t + [2r - r exp(- ta /m)  = (m/a)[1 - exp(-ta/m)] (37) 

Since Einstein's relation for the diffusion constant is 

D = lff3a (38) 
one may write Eq. (34) as 

Do =L-I'2~ CNexp(i~rN) W~(p+ i~Nm[1-exp(--~)]D) 
{ 4~-ZNZ [ m m ( t in)l} • exp L2 D t - - - a  +-c~exp - (39) 

It is clear from the damping behavior of the last exponential that in the 
infinite-time limit one has 

lim Do = L - 1  gem(p) (40) 
~---~ co  

Thus, the average of the phase space distribution for a particle in a 
"Brownian"  fluid but subject to no other forces relaxes to a distribution 
which is uniform in position space and MaxweUian in momentum space, as 
was expected. One should also note that Eq. (39) contains in the last exponen- 
tial the term 

m [ t,~'~ 1 
D t - + Z expl,- }] 

which is the diffusive behavior of a particleY a,14) 
Equation (39) shows the advantage of calculating the phase space distri- 

bution rather than calculating the position distribution and momentum 
distribution separately. It also illustrates how information is lost when one 
contracts the description of a system. When one asks, "What  is the average 
position distribution of such a system .9," one obtains, by the methods nor- 
mally used, (4-6) a Gaussian distribution of zero mean and a second moment of 

2 D [ t  - --m --m exp ( - - ~ )  ] a  (41) 

This is also the answer one obtains by integrating Eq. (39) over momen- 
tum space and transforming from Fourier components to position space. 
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On the other hand, one may ignore position information and ask the 
question, "What  is the average momentum distribution ?" Traditionally, the 
answer is, at all times, the Maxwellian distribution. In the present calculation, 
integrating Eq. (39) over position space yields a Maxwellian momentum 
distribution. 

One may also inquire about conditional probabilities. What is the average 
position distribution of a particle at some time t, which is known to have a 
specific momentum p at time t? It is not the above Gaussian distribution, 
Eq. (41). The average momentum distribution at a specific position is not 
Maxwellian. Equation (39) makes these facts clear. 

5.2. Analysis of Dz 

We have 

D1 = {'"}1 dsl exp[ -  (t - sl)(A - B)] exp i --ff rkl -~p 

x e x p [ - s l ( A -  B ) l e x p ( i ~ r N ) W , , ( p )  (42) 

where 

{"'}i = ~ ~ L-iO(ki)Clvi2-~ k (43) 
/c i N 

Using the result which was obtained in the analysis of Do, one may rewrite 
Eq. (42) as 

Dx = {'"}1 dsx exp[ - ( t  - sl)(A - B)] ~-~ exp i r (N  + kx) 

x Wm(p + f(s~,  N))r(s~,  N)  (44) 

where 

f(s~,  N)  = (i2rrUm/L[3a)[1 - exp(-s~a/m)] (45) 

and 

F(sl ,  N)  -= exp[(27r2N2/L2fim)r 

One may now use Lemma 3, Eq. (27), and obtain 

D1 = {'"}1 exp i -L- r(N + kl) dsl {'"}2 

x exp - ( t - s l )  T ( N +  kl) 

(46) 
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i2~ p ] 
• exp[(t - s , )B] exp r - sl) ~ (N - k l )  m 

x exp c}2(t - sl)i-E~ (N + kl) 2 

[ 2~2 1 • exP[L-- ~ 4(N + kl)2r - sl) Wm(p + f(sl, N))F(s~, N) (47) 

where 

a [ - ( t  s~)~l + t - s ~ - r  {'"}2 -- Fp exp - m -~- (N + kx) (48) 

Next  Dx is simplified and one obtains 

] N -~- kz exp i r(N + k,) 

• ds~ exp - (t - s~) + 
m Z- 

x Wm(p+f(s~ ,N)  e x p [ - ( t - s ~ ) ~ ]  + f ( t - s ~ , N +  k~)) 

x F(t - s~, N + kz)F(sz, N) 

• exp f(sz, N)~mm(N+ k~) 1 - exp - ( t - S l )  m (49) 

N o w  the infinite-time limit o f  D1 will be examined and it will be found 
to depend on the initial spatial distr ibution only as far  as the normalizat ion.  
In the integrand, limt~ ~ F(t - sz, N + k~) is zero unless s~ ---> ~ or N + kl  = 
0. I f  N + k~ =0 ,  the integrand contains a te rm l i m t ~  e x p [ - ( t  - sz)a/m] 
and the integrand is still zero unless sz ---> oo. I f  s~ ~ 0% then the integrand is 
zero due to F(sl, N) unless N = 0. Therefore ,  only the N = 0 t e rm in the 
sum over  N contr ibutes to the infinite-time limit o f  D1. F r o m  normal iza t ion  
requirements ,  Eq. (32), Co = L -1/2. We have 

l im Dx = L -~ ~ L-i/20(k~) lira ds~ e x p [ - ( t  - sl)(A - B)] 

x i -L- k~ exp i -L rk~ -Zp Win(p) (50) 

Using the definition of  A and the fact that  B exp[i(27r/L)rk~] Win(p) = 0, one 
m a y  write Eq. (50) as 

f lim Da = L -~ ~ L-~/~(k~) lira dsl ( - f i )  e x p [ - ( t  - s~)(A - B)] 

- B) exp(i~-rkz~ Win(p) (51) X (A 
\ L, / 
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The integrand is now an exact differential! Integrating gives 

limD~=L-l~L-1/20(k~)(-p)[exp(i2-Zrk~) - 3(kl)]W~(p) 
t ~ ~ kj. 

o r  

lim D~ = -EL-1Wm(p)[U(r) - U(r)] 
t-~oo 

(52) 

(53) 

If one expands a Maxwell-Boltzmann distribution in powers of/3, one finds 
the asymptotic limit of Do and D1 for the first two terms. The proof  of this 
appears later. In order to prove this relation to all orders, one must analyze 
D,  for arbitrary n. 

5.3. Analysis of  D~ 

From what has been learned in the analysis of Do and D1, D~ may now 
be evaluated. A very useful result may be abstracted from the analysis of D1. 
From Eqs. (44) and (49), one may show 

exp[- t ( i~mmK- B)] W,.(p + b) 

From Eq. (18) one has 

k 2 ;ON l 

x Cl (i 2~r] N k k t =~-1 

x e x p [ - ( t  - sl)(A - B)] exp i T rkN -~p 

x exp[-(s~ - s2)(A - B)] exp i rkN-1 -~p.'. 

2~r 0 (i2rrrl) Win(p)(55) x exp(i-Eklr ) FppeXp[-sN(A - B)]exp -~- 
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Letting the A operators act, one obtains 

~08N - 1 DN = {'"}1 dal"'" dan 

�9 2 r  i = 1  • e x p { - ( t -  sz)[,-L--~mP(l+ ~ k , ) -B] )  

• exp - ( s l - s = )  t~mm p l +  ~--~1 k~ - B  ~pp... 

x 9::t i- /.2~r 
~p exp[--SN[t 77mmP'-- B)] Win(p) 

where 

{'"}1 = L -~N+l~/2[i2rr~N ~ C, 
\ - Z - - /  , 

Using Lemma 3, Eq. (27), one has 

(56) 

p I'*N-1 { [2 r r  
DN = {'"}1 Jo dsz"" Jo dan {'"}2 exp - (t - sl) i p 

�9 2~"  x ...exp[--SN(t -s -- B) ] Wm(p) (58) 

where {'"}2, the product obtained from commuting all the a/ap operators to 
the left, is given by 

{"'}2 = f~p exp [ - ( t  - sl) m] 

i2~- ( 
+ [t - sl - r - sl)]L-m l 

x {~p exp[- ( t  - s2) m] 

i2zr ( 
+ Is1 - s~ - r  - s~)]  Z N  l 

N 

+ 

)} + ~ k ~  ... 
5=1 

]'-I ~ O(k{) exp i rki (57) 
i=l ~i 
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Equation (60) is an expression for the phase space distribution at any 
time t. In this expression all of the differential operators have acted, with the 
exception of some of the momentum operators. Even though there are N 
integrals yet to be performed, one may still find out a lot about the dynamics 
of the system by studying the form of the expression. The term {'"}a con- 
tains damping exponentials, which, for many terms in the sums over Fourier 
indices, provide for a contribution to the integrals only when the integration 
variable is near t. As t grows, this trend is enhanced. The limit of DN for large 
t is now calculated using this approach. 

From the form of D.  it may be argued that the only term in the sum ~z 
that contributes to the infinite-time limit of D,  is the term l = 0. This is due 
to the product {...}a which contains 

i = l  

unless sl ~ ~ .  If s~ -+ oe, then 

lira F s ~ - s 2 ,  l +  k~ 
$1 ~ c,o 

= 0  

unless S/ = oe. This process continues until limsNo~ F(SN, l ) =  0 unless 
/ = 0 .  

This chain of argument may be broken at some point if there is a sum 
which is zero, l + ~v21J k~ = 0. In this case the time variable sj+l is not 
required to become infinite. This type of problem also occurred in the evalua- 
tion of D1; see the arguments following Eq. (49). In this case the argument 
is similar. The chain of argument is assumed to be intact up until this first 
break. Thus, the time variables t, sl, s2 . . . .  , sj all become infinite while, sj+~ 
is allowed to remain finite. {'"}2 contains the following term: 

~ exp - ( t - s j + l ) m  + [ t - s x - ~ ( t - s l ) ] ~ - - m m  l +  k~ 

x exp - ( s l  - sj+l) m + ... + [ s l -  sz+l - ~(s t  - sz+l)]~--~ 

The exponentials in this term all damp to zero and only the last term remains. 
This last term, however, contains l + ~N_-j k~, which was assumed to be zero. 
Thus one sees that all such breaks in the chain of argument which has been 
constructed lead, inevitably, to a zero contribution. It has been shown then 
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that limt ~ o~ DN may be written in terms of only the normalization information 
from the initial spatial distribution, 

f 
t f~N - 1 

lira D~ = lim L -~ dsz.., dsN exp[--(t  -- sz)(A - B)] dU(r)  
t-~ oo t ~  ~o Jo d r  ~ p  

dU(r)  ~ exp[-sN(A -- B)] Win(p) (64) 
x dr ap 

Since 

~P W~(p) ~ exp[-sN(A - B)] Wm(p) = -~p W~(p) = - - ~  

Eq. (64) may be written in a form similar to Eq. (50), 

lira DN ---- lira L -~ ds~.., dsN_l exp[--(t  -- sl)(A - B)] 
t ~m t~oo 

f~ u-1 dsN exp[-(sN_z - SN)(A -- B)] au(o 
& @ 

(65) 

x ( -  p)A U(r) Win(p) (66) 

Since - B W ~ ( p )  -- 0, this quantity may be added to the integrand, thereby 
making it an exact differential of SN ! Integrating, one has 

f~ foSN - 2 lim D~r = lira L -  1 dsl ... dsN_ 1 
t~oo t~oo 

dU(r)  e 
• e x p [ - t ( t - s l ) ( A - B ) ]  dr ~p 

• ( -B){1  - exp[-sz~_l(A - B)]}U(r)Wm(p) (67) 

The part of the integrand which uses the 1 in the last bracket is already in the 
form of Eq. (66) and this integration procedure can be iterated. The part of 
the integrand which uses exp[--SN-I(A -- B)] is of the form of Eq. (56) with 
R(r)  replaced by U(r). It has been shown that in an equation of this form the 
function of r may be replaced by its normalization information, 

~.. f dU = - = f;  U(r) dr (68) 

As this procedure is repeated N times one obtains 

lim O N = L - I ( - ~ )  z~ (1 _7=.) dU Win(p) (69) 
t-'~ cO 
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Thus, 

o r  

Do = L -  1 Wm(p) 

D~ = - L -  1/3[U(r) - 8]  Wm(p) 
D2 = �89 2 - 8 2 - 2UU + 2U2)Wm(p) 

D2 = �89  U) 2 - ( U -  U)2]Wm(p) (70) 

Therefore one has 

lim D(r,p, t) = L -~ ~ 3NKj(r)Wm(p) (71) 
~--* oo N = 0  

where 

Ku'(r)=(-1y[(1-..-3 f dU] N (72) 

This is a Maxwell-Boltzmann distribution. This is a remarkable statement. 
Only upon close examination does Eq. (71) reveal itself to be a Maxwell- 
Boltzmann distribution. In order to prove this statement, one needs a power 
series in/3 which is equivalent to a Boltzmann distribution. 

6. SERIES E X P A N S I O N  OF THE B O L T Z M A N N  D I S T R I B U T I O N  

T h e o r e m  1. The series expansion of the Boltzmann distribution is 
given by 

exp[- /3U(r)]  
= L -1 ~ KN(r)3 N (73) 

f~ exp[-f lU(r)] dr N=o 
where 

KN(~) ---- ( -  ly  ~ N! 
N! (N -- 'm)! m! [U(r) - U(r)] N-m 

m = O  

s" r~rp! m! (-  l)" x ~ .t .t m ,(IT]m {[U(r) - U(r)]Zff, (74) 
p a r t i t i o n s  l = l  " *, / 

o f  m 

In Eq. (74), g(r) = L-lf~ g(r) dr for any function g(r),  and the symbol 

E 
p a r t i t i o n s  

o f  m 

is the sum over all partitions of m into smaller integers l with multiplicity rnz 
such that 

m = ~ l m z  and p =  ~ m ,  
I = 1  I = 1  
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Henceforth this summation symbol is used without explanation. Theorem l 
is proved in Ref. 8. In order to show that the term (71) is a Boltzmann 
distribution, one must show 

KN(r) = KN'(r) (75) 

Proof of  the Boltzmann Torn. In this proof the method of induction is 
used. If  the first several terms in the two series are examined, it is easily seen 
that they are identical. Assume 

KN(r) = KN'(r) 

Then one may write 

K~ + ~(r) = - (1 - 7..) f du KN(r) (76) 

(_I)N+I N N! 1 ( U -  ~)N-m+~ 
- N!  (1 -'-7:.) ~ m! (N - m)I U - m  + 1 

m = 0  

S" 1-~ p! m! ( -  1)p x z_~ I • m-~! ~ [ ( U -  U)Z] m, (77) 
parti t ions , :1  '" ( " )  

of  r~ 

Now one makes use of a combinatorial lemma which is proved in Ref. 8. This 
lemma is 

N ]_~ ( _  1)Pp! 
- ~ ( -1 )~+l [U( r )  - U(r)l~+l-m ~ (N + 1 = ~ ) l .m  l' (t') m, 

r a = O  p a r t i t i o n s  / = 1  " " 
of m 

• {[U(r) - u ( r ) ] T ,  

N + I  
= (-1)~+~ ~ ~ (-1),'p'~ 

partitions t=l mr'! (l't) m'' {[U(r) -- U(r)lV}~," 
of N+l 

Using this lemma, one obtains 

N 

K[c+l(r) = ( - 1 )  TM ~ [ U ( r ) -  U(r)] N+l-m 
r g = 0  

o r  

(78) 

( -  1).p! 
• ~" ~ (N + 1 Z -~)V.-rn~! (l')m~ {[U(r) - U(r)l'}~,(-l) N+~ 

p a r t i t i o n s  l = 1 
of  m 

• ~. I -~  (-1)PP! { t U ( r ) -  U(r)lk} % (79) 
p a r t i t i o n s  /c = 1 m / ~  ! ( k  ] ) m ~  
of N+l 

Kh+l(r) = KN+I(r) (80) 
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This completes the proof of the fact that the 
Boltzmann distribution. 
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series (71) is a Maxwell- 

7. C O N C L U S I O N  

This paper has presented a solution to the problem of the forced motion 
of a particle in a "Brownian"  fluid. This was done using the disentanglement 
theorem, a time-ordered extension of Glauber's theorem, commutator opera- 
tors, and other operator algebra. These techniques proved to be very powerful 
and it was shown that the solution may be written and simplified to the point 
such that information can be extracted from it. Specifically, it is shown from 
this solution that the infinite-time limit of the probability distribution for the 
particle is a Maxwell-Boltzmann distribution. An obvious extension of this 
problem is to specific potentials which have wide interest or applicability. 
The problem of an ion drifting under the influence of a constant electric field 
will be solved at all times in a paper in preparation. 
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